A Dichotomy Theorem for Polynomial Evaluation
نویسندگان
چکیده
A dichotomy theorem for counting problems due to Creignou and Hermann states that or any finite set S of logical relations, the counting problem #SAT(S) is either in FP, or #P-complete. In the present paper we show a dichotomy theorem for polynomial evaluation. That is, we show that for a given set S, either there exists a VNP-complete family of polynomials associated to S, or the associated families of polynomials are all in VP. We give a concise characterization of the sets S that give rise to “easy” and “hard” polynomials. We also prove that several problems which were known to be #P-complete under Turing reductions only are in fact #P-complete under many-one reductions.
منابع مشابه
Toward a Dichotomy Theorem for Polynomial Evaluation
A dichotomy theorem for counting problems due to Creignou and Hermann states that or any finite set S of logical relations, the counting problem #SAT(S) is either in FP, or #P-complete. In the present paper we study polynomial evaluation from this dichotomic point of view. We show that the “hard” cases in the Creignou-Hermann theorem give rise to VNP-complete families of polynomials, and we giv...
متن کاملA Dichotomy Theorem for Homomorphism Polynomials
In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H . We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P ). We...
متن کاملLooking for a Version of Schaefer's Dichotomy Theorem When Each Variable Occurs at Most Twice
We study the complexity of generalized satissability problem for formulas whose variables occur at most twice. We prove a dichotomy theorem for a special case of generalized satissability with constants and a suucient condition, inspired by matching theory, for its polynomial time solvability.
متن کاملFine-Grained Dichotomies for the Tutte Plane and Boolean #CSP
Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #Phard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counti...
متن کاملDichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas
In 1978, Schaefer proved his famous dichotomy theorem for generalized satisfiability problems. He defined an infinite number of propositional satisfiability problems, showed that all these problems are either in P or NP-complete, and gave a simple criterion to determine which of the two cases holds. This result is surprising in light of Ladner’s theorem, which implies that there are an infinite...
متن کامل